skip to main content


Search for: All records

Creators/Authors contains: "Fertig, Alex A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrogen-atom (H-atom) transfer at the surface of heterogeneous metal oxides has received significant attention owing to its relevance in energy conversion and storage processes. Here, we present the synthesis and characterization of an organofunctionalized polyoxovanadate cluster, (calix)V6O5(OH2)(OMe) 8 (calix = 4- tert -butylcalix[4]arene). Through a series of equilibrium studies, we establish the BDFE(O–H) avg of the aquo ligand as 62.4 ± 0.2 kcal mol −1 , indicating substantial bond weaking of water upon coordination to the cluster surface. Subsequent kinetic isotope effect studies and Eyring analysis indicate the mechanism by which the hydrogenation of organic substrates occurs proceeds through a concerted proton–electron transfer from the aquo ligand. Atomistic resolution of surface reactivity presents a novel route of hydrogenation reactivity from metal oxide surfaces through H-atom transfer from surface-bound water molecules. 
    more » « less
  2. We report accelerated rates of oxygen-atom transfer from a polyoxovanadate–alkoxide cluster following functionalization with a 4- tert butylcalix[4]arene ligand. Incorporation of this electron withdrawing ligand modifies the electronics of the metal oxide core, favoring a mechanism in which the rate of oxygen-atom transfer is limited by outer-sphere electron transfer. 
    more » « less
  3. null (Ed.)
    We report a rare example of the direct alkylation of the surface of a plenary polyoxometalate cluster by leveraging the increased nucleophilicity of vanadium oxide assemblies. Addition of methyl trifluoromethylsulfonate (MeOTf) to the parent polyoxovanadate cluster, [V 6 O 13 (TRIOL R ) 2 ] 2− (TRIOL = tris(hydroxymethyl)methane; R = Me, NO 2 ) results in functionalisation of one or two bridging oxide ligands of the cluster core to generate [V 6 O 12 (OMe)(TRIOL R ) 2 ] 1− and [V 6 O 11 (OMe) 2 (TRIOL R ) 2 ] 2− , respectively. Comparison of the electronic absorption spectra of the functionalised and unfunctionalised derivatives indicates the decreased overall charge of the complex results in a decrease in the energy required for ligand to metal charge transfer events to occur, while simultaneously mitigating the inductive effects imposed by the capping TRIOL ligand. Electrochemical analysis of the family of organofunctionalised polyoxovanadate clusters reveals the relationship of ligand environment and the redox properties of the cluster core: increased organofunctionalisation of the surface of the vanadium oxide assembly translates to anodic shifts in the reduction events of the Lindqvist ion. Overall, this work provides insight into the electronic effects induced upon atomically precise modifications to the surface structure of nanoscopic, redox-active metal oxide assemblies. 
    more » « less